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Machine learning Apr 15, 2022

Lecture 7: Tree distribution

Lecturer: Haim Permuter Scribe: Avital Yarden and Maman Gil

This lecture discusses tree distribution and the method of types. We will introduce a

method developed by Chow and Liu [1] to fit the best tree to the data, wherein the ”Best

tree” refers to the tree that have the minimum divergence. We will use some principles that

originated in the field of the method of types, in order to show that minimum divergence

is equivalent to maximum likelihood. The method of types introduced here was fully

developed by Csiszar and Korner [2], who derived the main theorems of information

theory from this perspective.
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Fig. 1. A tree with distributions of the structure Pt(x, y, z, u, v, w) = P (x)P (y|x)P (z|x)P (u|z)P (w|z)P (v|y).

I. DEFINING THE PROBLEM

We will start by introducing the definition of a tree structure.

Definition 1 (Tree) A tree is an undirected graph with no cycles (loops).

A tree with nodes corresponding to random processes defines a conditional independence

structure on the variables. Conditioned on any node, the subtrees on its edges are

independent. For example, the tree in Figure 1 corresponds to

Pt(x, y, z, w) = P (x)P (y|x)P (z|x)P (u|z)P (w|z)P (v|y). (1)
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Chow and Liu used the tree distribution which have only one father for every node

(excluding the root), they assumed that the criteria of the optimal tree is minimum

divergence, and they proved that the minimum divergence achieved by maximum mutual

information over the air of variables. Note that a tree structure has a much smaller number

of parameters (linear in the number of nodes) when compared to the exponentially many

parameters needed for a general distribution. We get less complex sparse approximator

when we use the tree structure but we also get less accuracy compared to the general

distribution.

Assuming we have information represented as follows:

x1 y1 z1 w1

x2 y2 z2 w2

...
...

...
...

xn yn zn wn

then Xn, Y n, Zn, W n are n samples of processes. For example, n can be the number of

students and X , Y , Z and W are the students’ psychometric grade, first year average,

the second year average, and the third year average, respectively. Of course, there are

many possible trees that can describe the probability of the data presented, but we are

interested in the tree that has the largest probability among all the possible trees. From

equation (1):

max
All Trees

Pt(x
n, yn, zn, wn) = max

All Trees

n
∏

i=1

Pt(xi, yi, zi, wi). (2)

where the sequences of the samples are i.i.d.

II. METHOD OF TYPES

In order to show that minimum divergence is equivalent to maximum likelihood we

will use some principles that originated in the field of the method of types. The method

of types evolved from notions of strong typicality. Though some of its ideas were used

by Wolfowitz [6] to prove channel capacity theorems, the method was fully developed
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by Csiszar and Korner [2], who derived the main theorems of information theory from

a method of types perspective.

Let xn = (x1, x2, ..., xn) be a sequence from the alphabet X = (a1, a2, a3, ...a|X |). Let

N(a|xn) be the number of times that a appears in sequence xn.

Definition 2 (Type) The type Pxn (or empirical probability distribution) of a sequence

xn is the relative proportion of occurrences of each symbol of X , i.e., Pxn(a) = N(a|xn)
n

for all a ∈ X .

Example 1 Let X = {0, 1, 2}, let n = 5 and x5 = (1, 1, 2, 2, 0). Then N(0|x5) = 1,

N(1|x5) = 2 and N(2|x5) = 2. Hence, Pxn =
(

1
5
, 2
5
, 2
5

)

.

Definition 3 (All possible types) Let Pn be the collection of all possible types of

sequences of length n.

For example, if X = {0, 1}, the set of possible types with denominator n is

Pn =

{

(P (0), P (1)) :

(

0

n
,
n

n

)

,

(

1

n
,
n− 1

n

)

, ...,

(

n

n
,
0

n

)}

. (3)

Lemma 1 An upper bound for |Pn|:

|Pn| ≤ (n+ 1)|X |. (4)

Proof:

There are |X | components in the vector that specifies Pxn . The numerator in each

component can take on only n + 1 values. So there are at most (n + 1)|X | choices

for the type vector.

Definition 4 (Type class) Let P ∈ Pn. The set of sequences of length n with type P is

called type class of P, denoted T (P ):

T (P ) = {xn : Pxn = P}. (5)

Theorem 1 (Probability of a sequence in the type class) If X ∼ Q i.i.d., the proba-

bility of xn depends only on the type of xn, i.e., Pxn

Q(xn) = 2−n(H(Pxn )+D(Pxn ||Q)). (6)
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Proof:

Since {Xi}i≥1 are i.i.d,

Qn(xn) =
n
∏

i=1

Q(xi). (7)

Now consider

logQn(xn) =
n

∑

i=1

logQ(xi) (8)

(a)
=

∑

a∈X

N(a|xn) logQ(a) (9)

(b)
= n

∑

a∈X

Pxn(a) logQ(a) (10)

= n
∑

a∈X

Pxn(a) log
Q(a)

Pxn(a)
· Pxn(a) (11)

= n(−H(Pxn)−D(Pxn||Q)). (12)

where

(a) follows because each a ∈ X contributes exactly logQ(a) times it’s number of

occurrences in xn to the sum in (8).

(b) follows from the definition of Pxn(a).

Hence, we obtained

Qn(xn) = 2−n(H(Pxn )+D(Pxn ||Q)). (13)

In general, the equation can be constructed vectorially as follows:

Qn(xn
1 , x

n
2 , . . . , x

n
m) = 2

−n(H(Pxn1 ,xn2 ,...,xnm
)+D(Pxn1 ,xn2 ,...,xnm

||QX1,X2,...,Xm ))
. (14)

where xn
1 , x

n
2 ,. . . , xn

m are the random processes. And QX1,X2,...,Xm
is the joint distribution

function.

For more information on method of types, see a whole lecture on the subject:

http://www.ee.bgu.ac.il/˜haimp/multi2/lec1/lec1.pdf

http://www.ee.bgu.ac.il/~haimp/multi2/lec1/lec1.pdf
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III. TREE DISTRIBUTION

We want to find the tree distribution that have the maximum probability (maximum

likelihood principle). We saw in the last section about method of types, that is achieved

by minimum divergence. From equation (13):

Pt(x
n
1 , x

n
2 , ..., x

n
m) = 2−n(H(Pemp)+D(Pemp||Pt(x1,x2,...,xm))), (15)

where Pemp = Pxn
1 ,x

n
2 ,...,x

n
m
(x1, x2, ..., xm). Since the empirical entropy H(Pemp) does not

depend on the selected tree but only on samples, then to obtain the maximum probability,

we should look for the minimum of the divergence D(Pemp||Pt(x1, x2, ..., xm)).

D
(

Pemp||Pt(x1, x2, ..., xm)
)

=
∑

x1∈X1

...
∑

xm∈Xm

Pemp log
Pemp

Pt(x1, x2, ..., xm)

= H(Pemp)−
∑

x1∈X1

...
∑

xm∈Xm

Pemp logPt(x1, ..., xm). (16)

In a tree distribution, it can be said that each node in the tree depends only on its parent

and not on any other node in the tree.

Pt(x1, x2, ..., xm) =
m
∏

i=1

Pt(xi|xj(i)), (17)

where xj(i) is the parent of xi, see Fig 1.

The Chow and Liu algorithm of creating a tree based on the assumption that minimum

divergence is the criteria of the optimal tree. We will define the next lemma of minimum

cross entropy for the following proof which show that the minimum divergence is

equivalent to maximum sum of the mutual information.

Lemma 2 (Minimum cross entropy) The minimum by q of the cross entropy between

(p, q) is equal to the entropy of p

min
q

H(p, q) = H(p), (18)

and it is achieved by q = p.

Proof:

min
q

H(p, q) = min
q

−
∑

x

p(x) log q(x)



7: Tree distribution-6

= min
q

−
∑

x

p(x) log
q(x)p(x)

p(x)

= min
q

∑

x

p(x) log
p(x)

q(x)
−
∑

x

p(x) log p(x)

= min
q

D(p||q) +H(p)

(a)
= H(p),

where (a) follows from the fact that KL divergence D(p||q) is always non-negative and

it get zero if and only if q = p.

Theorem 2 (Chow and Liu results [1] ) The minimum divergence achieved by maxi-

mum sum of mutual information, and it given by,

min
Pt

(

D
(

Pemp||Pt(x1, x2, ..., xm)
)

)

= const−
m
∑

i=1

I(Xi, Xj(i)),

where the mutual information induced by Pemp.

Proof:

D
(

Pemp||Pt(x1, x2, ..., xm)
)

(a)
= H(Pemp)−

∑

x1∈X1..xm∈Xm

Pemp(x
m) logPt(x1, ..., xm)

(b)
= H(Pemp)−

∑

xm

Pemp(x
m) log

m
∏

i=1

Pt(xi|xj(i))

= H(Pemp)−
∑

xm

Pemp(x
m) log

m
∏

i=1

Pt(xi|xj(i))Pemp(xi)

Pemp(xi)

= H(Pemp)−
∑

xm

Pemp(x
m)

m
∑

i=1

(

log
Pt(xi|xj(i))

Pemp(xi)
+ logPemp(xi)

)

= H(Pemp)−
∑

xm

m
∑

i=1

Pemp(x
m)

(

log
Pt(xi|xj(i))

Pemp(xi)
+ logPemp(xi)

)
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= H(Pemp)−
m
∑

i=1

∑

xm

Pemp(x
m) log

Pt(xi|xj(i))

Pemp(xi)
−

m
∑

i=1

∑

xm

Pemp(x
m) logPemp(xi),

(19)

= H(Pemp)−
m
∑

i=1

∑

xi,xj(i)

Pemp(xi, xj(i)) log
Pt(xi|xj(i))

Pemp(xi)
−

m
∑

i=1

∑

xi

Pemp(xi) logPemp(xi),

(20)

= H(Pemp)−
m
∑

i=1

∑

xj(i)

Pemp(xj)
∑

xi

Pemp(xi|xj(i)) log
Pt(xi|xj(i))

Pemp(xi)
−

m
∑

i=1

∑

xi

Pemp(xi) logPemp(xi),

(21)

(d)
= H(Pemp)−

m
∑

i=1

∑

xj(i)

Pemp(xj)
∑

xi

Pemp(xi|xj) log
Pemp(xi|xj(i))

Pemp(xi)
−

m
∑

i=1

∑

xi

Pemp(xi) logPemp(xi),

(22)

(c)
= Const−

m
∑

i=1

I(Xi;Xj(i)), (23)

where

(a) - follows from equation (16)

(b) - follows from equation (17)

(c) - Note that
∑

xi
Pemp(xi|xj) log

Pt(xi|xj(i))

Pemp(xi)
is a divergence and the minimum is

achieved when Pt(xi|xj(i)) = Pemp(xi|xj(i))

(d) we define Const = H(Pemp) −
∑m

i=1

∑

xi
Pemp(xi) logPemp(xi) which do not

depends on the tree structure

IV. MAXIMUM SPANNING TREE ALGORITHM

The problem is to create a tree that best describe the data, i.e. the tree that will take

the divergence to minimum. In the previous section, we showed that minimizing the

divergence is equivalent to maximizing the sum of all the mutual information between
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each node and its parent in the tree. Our goal is to find an algorithm to create the tree.

Kruskal [4] proposed the following algorithm called ”Minimum spanning tree algorithm”

to assemble the desired tree. This is a greedy algorithm which doesn’t promise that an

optimal tree will be found. The Greedy Choice is to pick the smallest weight edge that

does not cause a cycle in the MST constructed so far. This is a generic pseudo-code for

”Minimum spanning tree algorithm”, when V is a set of all the vertices, E is a set of all

the possible edges, A is a sub set of E which contain all the edges that included in the tree.

KRUSKAL(V):

A = ∅

for each vertex v,u in V: do

E = calculate weight of edge(u,v);

end

E = SORT-INC(E);

for each edge in E: do

if cycle is not formed: then

A = A ∪ (u, v)

end

if length(A)=length(V)-1: then

break;

end

end

In our problem we need to use ”Maximum spanning tree algorithm” which means

instead of order the wights(mutual information) by increasing order, we need to order

the wights by decreasing order. Before starting the routine we must compute all the

mutual information and arrange the resulting process pairs in a list from the largest

wight to the smallest wight.

Stage 1: Find the pair of nodes with the greatest mutual information in the list.

I(i,j) = P (xi, xj(i)) log
P (xi|xj(i))P (xj(i))

P (xj(i))P (xi)
, i, j ∈ [1, 2 . . . , N ] , i 6= j. (24)

Stage 2: Connect the pair of nodes found in stage 1, update the list of mutual
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information and return to Stage 1 if the list still contains pair of processes. The update

includes the following:

1. Delete the mutual information of the selected pair.

2. Delete all items in the list that represent prohibited connections, i.e., connections that

create loops in the graph.

Stage 3: Decide which of the two processes will be at the head of the tree and determine

the direction of the arrows. In fact, for either choice, we obtain the same sum of mutual

information, and therefore, either choice is possible.

Example 2 Let us assume that we have the random processes X Y Z W . The mutual

information between each possible pair was calculated. The results are shown in the table

below and in Figure 2.

I=0.6I=0.5

I=0.1

I=0.3

I=0.4I=0.4

X

Z

YW

Fig. 2. Calculate the mutual information between each pair of random processes.

pairs empirical mutual information

X, Y 0.6

X,Z 0.1

X,W 0.5

Y, Z 0.4

Y,W 0.3

Z,W 0.4

We perform step 1 of the routine and see that the greatest mutual information is
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between X and Y . Thus, we connect them with a line. We then Proceed to step 2,

delete X, Y from the table and return to step 1. See Figure 3.

I=0.6I=0.5

I=0.1

I=0.3

I=0.4I=0.4

XX

Z

YYW

Fig. 3. Connect the two random processes with the largest mutual information, and remove that mutual information

from the list.

pairs empirical mutual information

X,Z 0.1

X,W 0.5

Y, Z 0.4

Y,W 0.3

Z,W 0.4

We again apply Step 1 followed by Step 2 again: in this instance, we delete X,W and

we also delete Y,W , the latter pair because it might create a loop in the graph. See

Figure 4.

pairs empirical mutual information

X,Z 0.1

Y, Z 0.4

Z,W 0.4

We re-apply step 1 and find that we have two lines with the same mutual information,

so we can arbitrarily choose between the two options.

After step 2, it appears that the table is empty, so we proceed to step 3 and select the
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I=0.6I=0.5

I=0.1

I=0.3

I=0.4I=0.4

XX

Z

YY WW

Fig. 4. Connect the next two random processes with the largest mutual information in the list, and remove it and all

connections that might create loops on the graph.

tree head and the directions of the arrows. See Figure 5 and Figure 6.

I=0.6I=0.5

I=0.1

I=0.3

I=0.4I=0.4

XX

ZZ

YY WW

Fig. 5. Connect the next two random processes with the largest mutual information in the list, and remove it and all

connections that might create loops on the graph.
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X

Z

YW

Fig. 6. Step 3: decide the direction of the arrows arbitrarily or by preference.
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